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Role of core losses in drift-vortex interactions
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~Received 24 February 1997!

Dipole drift vortices in the Hasegawa-Mima-Charney equation are studied by means of particle-in-cell~PIC!
calculations. Apart from providing an efficient and accurate solution of the equations, PIC provides additional
information about the fluid flow such as exchange of fluid between regions interior and exterior to the dipoles.
Several cases of perturbed dipoles are studied with particular emphasis on the evolution of the fluid that is
initially trapped inside the separatrix of the co-moving stream function of each unperturbed dipole. In particu-
lar, the effect of a finite tilt of the dipole axis is analyzed. Here, asymmetric losses from the two dipole halves
are found to play a crucial role in the qualitative evolution of the dipole trajectory: dipoles initially moving in
the unstable direction are found to reverse their average velocity perpendicular to the density gradient. Very
large perturbations are obtained in dipole collisions. Here symmetry of the initial conditions plays an important
role: collisions of aligned dipoles appear almost solitonlike, while for nonaligned dipoles the collision at least
generates a tilt of the axes of the dipoles, but may also lead to a complete destruction of one of the poles. In
all cases a significant loss of initially trapped fluid is demonstrated.@S1063-651X~97!14207-6#

PACS number~s!: 52.35.Kt, 47.32.Cc, 52.65.2y
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I. INTRODUCTION

A characteristic feature of two-dimensional~2D! fluid and
plasma turbulence is the emergence of long-lived cohe
structures through self-organization processes@1–3#. These
coherent structures often take the form of large scale
nopolar and dipolar vortices, and play an important role
the global transport of particles and energy@4#. Often the
nonlinear fluid or plasma equations admit analytical so
tions in the form of~dipole! vortices. The study of thes
solutions provides further insight into the behavior of vor
ces and their importance in turbulent transport. T
Hasegawa-Mima-Charney~HMC! equation describes the 2D
nonlinear evolution of electrostatic drift modes and turb
lence in an inhomogeneous plasma with a uniform magn
field. When the magnetic field is taken along thez axis and
the density inhomogeneityn0(x), which gives rise to a con
stant drift velocityv*[2(cTe /eB)@dlnn0(x)/dx#, is taken in
the x direction, the HMC equation for the electrostatic p
tentialf can be written as@5,6#

]

]t
~f2¹2f1v* x!1@f,f2¹2f1v* x#50, ~1!

where time is normalized toVci
21 , lengths to the ion

gyroradius at the electron temperature, and the poten
to e/Te . The Poisson bracket@ f ,g#[(] f /]x)(]g/]y)
2(] f /]y)(]g/]x) is used to write the convection with th
E3B drift as @f,•#. The same equation describes the b
havior of Rossby waves in a rotating atmosphere in the
called beta-plane approximation~see, e.g.,@6# for a detailed
comparison!. Equation~1! reflects the conservation of gene
alized potential vorticityv̄5f2¹2f1v* x. Dipole solu-
tions of the HMC equation have been obtained by Larich
and Reznik@7#, and a large number of analytical and nume
cal studies of these dipoles, their stability and interacti
have been carried out~see, e.g., Refs.@8–13#, or for a review
561063-651X/97/56~1!/947~10!/$10.00
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see@6#!. The dipoles propagate along they axis perpendicu-
lar to the density gradient and their propagation velocity
restricted to the rangeu,2v* , or u.0, which is outside
the range of phase velocities for linear drift waves.

We present a study of Larichev-Reznik dipoles by mea
of a particle-in-cell~PIC! code employing periodic boundar
conditions. As shown by Eq.~1!, the HMC equation is ide-
ally suited for such an approach~cf. @14,15#!. For example,
the global conservation of generalized potential vorticity
inherent in the PIC algorithm. Other important conservat

laws are those for energy,E[ 1
2 *@f21(¹f)2#dx dy and

generalized ‘‘enstrophy,’’U[ 1
2 *(f2¹2f)2dx dy. Also

these are found to be well respected by the numerics. M
important for the results presented in this paper is that
particles provide fluid tracers, which contain a wealth of
formation for the interpretation of the dipole dynamics a
fluid flows. In particular, it will be shown that perturbation
of a dipole lead to significant exchange between the fl
trapped inside the separatrix of the co-moving stream fu
tion and the surrounding fluid. As most or all vorticity ass
ciated with the dipole is concentrated in this origina
trapped fluid, this inevitably leads to a weakening of t
dipole. In one set of calculations, the effect of a finite tilt
the dipole axis has been analyzed. Such a tilt is known
lead to a stable oscillatory trajectory for dipoles with positi
y velocity, while for dipoles with negativey velocity the tilt
is unstable@8,16#. Here, it is shown that an asymmetry in th
losses from the two dipole halves is found to play a cruc
role in the qualitative evolution of the dipole trajectory: d
poles initially moving in a direction subject to the tilt insta
bility @16# are found to reverse their average velocity perp
dicular to the density gradient towards the stable directio

Very large perturbations may occur in dipole collision
Even though in the case of perfect alignment of the dip
axes these collisions may appear almost solitonlike@8#, our
calculations again show the importance of detrapping of
able fractions of trapped fluid from the original dipoles. He
947 © 1997 The American Physical Society
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948 56E. WESTERHOF, J. REM, AND T. J. SCHEP
also the symmetry introduced by the alignment of the dipo
is crucial. The effect of breaking this symmetry is shown
a set of calculations for increasing misalignment~or ‘‘impact
parameter’’!. Again the advantages of PIC simulations a
illustrated by the ability to trace the whereabouts after
collision of all fluid that was originally trapped by the d
poles.

This paper is organized as follows. A brief description
the numerical code is given in Sec. II. The results of num
cal calculations are presented in Sec. III. Initial conditio
for the calculations are obtained from the analytical dip
solutions of Ref.@7#, or a superposition of these. Thoug
these are not exact solutions on a periodic domain, co
quent errors are found to be small, as the dipole fields de
exponentially at large distances. A first set of examples
presented in Sec. III A, in which a single dipole is perturb
by a finite tilt of its initial direction of propagation, resultin
in a stable or unstable oscillation of the dipole trajecto
depending on its initial direction of propagation@8,16,17#. A
second set of simulations, presented in Sec. III B, has b
performed for a dipole collision similar to that treated in R
@8#, but with a varying ‘‘impact parameter.’’ Depending o
the impact parameter, large differences in dipole dynam
are observed. The main conclusions from our work are s
marized in Sec. IV.

II. PIC CODE FOR THE HASEGAWA-MIMA-CHARNEY
EQUATION

In a PIC code, the Hasegawa-Mima-Charney fluid eq
tion is solved by discretizing the fluid in the form of a larg
number of fluid parcels or quasiparticles. Each of the fl
parcels is assigned a given amount of generalized pote
vorticity, which is conserved by the flow. The solution of th
fluid equation is then achieved by moving the fluid parc
according to the flow that is calculated on a regular spa
grid on the basis of thev̄ vorticity distribution obtained by
interpolation from the fluid parcels to the grid. Here, ea
grid cell contains a large number of fluid parcels, and
stream function is effectively calculated in a mean-field a
proximation where nearest neighbor interactions are not
counted for. Thus, subgrid scale fluctuations are avera
out, which can be regarded as a form of numerical diss
tion. In this procedure the fluid parcels are considered
point particles; i.e., deformations of the fluid parcels in t
flow, such as stretching, are not accounted for.

In the code a two-dimensional (x,y) rectangular domain
is taken with periodic boundary conditions. The grid in bo
x and y is regular and the particles are initially distribute
homogeneously over the grid. As the flow is incompressi
the particle distribution is expected to remain~close to! ho-
mogeneous, which is indeed verified by the code res
apart from statistical fluctuations due to the finite number
particles per grid cell. The code then consists of the follo
ing basic procedures.

~a! Assignment of generalized potential vorticity from th
particles to the grid. This is achieved by the triangu
shaped cloud~TSC! algorithm @15#. This interpolation
scheme leads to an effective suppression of the particle n
in the simulations, with a smoothing of the vorticity fie
only on the order of the grid cell size. Higher order interp
s
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lation kernels, as suggested for PIC calculations in Ref.@18#,
have been tried, but yielded a smoothing of the vorticity fie
over too large distances without any significant further
duction of the particle noise.

~b! Solution of the stream functionf. Once the general-
ized potential vorticity is known on the grid, the Helmhol
equation for the stream function,

f2¹2f5v̄2v* x, ~2!

is solved. In the code the solution forf is obtained by the
Fourier transform method@19#.

~c! Calculation of the particle velocities. First, a veloci
field is calculated on the grid by central differencing of t
stream function. Next, the velocity at the position of ea
particle is obtained by simple bilinear interpolation within
grid cell.

~d! The actual time stepping. Here a leap-frog-type alg
rithm is employed to achieve sufficient numerical accura
and stability. The algorithm consists of the tracking of tw
generations of particles, one at odd and one at even t
steps. The velocity with which the particles are advanc
from time tn to tn12 is then based on the particle positio
vorticity distribution, and corresponding stream function
time tn11. Initialization of the particles att21 is achieved
along the lines described in Ref.@20#, except that the stream
function in all cases is obtained numerically as describ
above.

One complication arises in the leap-frog time stepp
scheme, since the positions of the odd and even time
ticles are directly coupled only at the time of initializatio
As time progresses in the simulation, trajectories of partic
from odd and even time generations diverge due to num
cal errors. When this divergence becomes too large, the
culation of the particle velocities~being based on the pos
tion of the corresponding particle from the other generati!
is no longer accurate. In order to suppress this source
numerical error, particles from the odd-time generation
reinitialized on the basis of the even-time particles afte
given number of time steps~typically 100–1000!.

Typical grid sizes for the calculations presented below
64364 or 1283128 with 25 particles per grid cell. Energ
conservation is found to be satisfied in all runs to with
1%. Enstrophy conservation is typically satisfied with
2% except for periods of very strong dipole interactio
where losses of up to 5% are found. The latter can be
plained by a transfer of enstrophy to sub-grid scales dur
such periods: the sub-grid scale fluctuations inv̄ vorticity
are smoothed out by the assignment to the grid, which res
in a loss of enstrophy. For a limited number of cases, a fi
check on the numerical accuracy of the results has been
formed either by increasing the number of particles per g
cell or by increasing the spatial resolution. The latter h
been achieved by increasing the number of grid cells wh
keeping the number of particles per cell fixed and, thus,
creasing the total number of particles as well. The increa
accuracy did not lead to significant differences between
results.

III. NUMERICAL RESULTS

The HMC equation~1! is known to possess dipole vorte
solutions. Analytical expressions for such solutions ha
been given by Larichev and Reznik@7#. These are obtained
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by searching for stationary propagating solutions with vel
ity u in they direction, i.e., solutions depending only on th
combinationy2ut, and thus by solving

@f2ux,f2¹2f1v* x#50. ~3!

The Poisson bracket vanishes identically when the two a
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ments are functionally related by some arbitrary functi
F. The Larichev-Reznik dipole solution is obtained by taki
for F a simple linear relation, with different coefficients in
side and outside a given copropagating circle of radiusr 0.
The solutions in the inner and outer regions are then matc
at the boundary. The solution that is obtained can be writ
as @7,21#
f5H uS r 0K1~rr !

K1~rr 0!
D cosu outer regionr.r 0

u
r2

l2F S 11
l2

r2D r2
r 0J1~lr !

J1~lr 0!
Gcosu inner regionr<r 0 ,

~4!
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wherer2511v* /u and the matching of the inner and out
solutions provides a dispersion relation forl @7#:

lr 0J1~lr 0!/J2~lr 0!52rr 0K1~rr 0!/K2~rr 0!. ~5!

Note that the requirement for realr limits the solutions to
propagating velocitiesu,2v* or u.0, which means tha
precisely the range corresponding to phase velocities for
linear waves is excluded. In geophysical terms, positiveu
corresponds to eastward and negativeu to westward propa-
gation. In the comoving frame, the stream function posse
a separatrix atr5r 0: the fluid inside this separatrix i
trapped and simply carried along with the dipole motion.

The initial conditions used in the numerical simulatio
presented below are based on these analytical dipole s
tions or a superposition of two of them. Since the analyti
solutions are obtained on an infinite domain, whereas p
odic boundary conditions on a finite rectangular domain
applied in the numerics, they are not the exact solutions
the latter case. However, the error this introduces in the
merics is small, especially because of the exponential de
of the solution for larger . The same remark applies to th
superposition of two analytical solutions: provided they a
initially well separated so that the effect of the larger con-
tribution of the one on the other is negligible.

A. Dipole stability

The dipoles in the HMC equation show a remarkable s
bility to all kinds of perturbations. Any attempt at an analy
cal proof of their stability, however, has failed@22#. More-
over, a small tilt of the axis of a dipole withu,2v*
~westward! leads to an instability in the sense that the tilt w
increase@8,16#. Perturbation of the dipole axis of a dipo
with u.0 ~eastward! only leads to a stable oscillatio
around the original straight trajectory@8,16#. However, a ba-
sic question is whether, or to what extent, the dipole as s
stays intact along its orbit. Even modest losses of fluid a
vorticity can lead, when integrated over long times, to la
and qualitative changes in the dipole orbit. The different
haviors of the dipoles with negative and positive velocity c
be explained by simple arguments based on the conserv
of generalized potential vorticity@8,16#: a dipole will move
in the direction of its axis; as the axis is tilted it will b
e
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displaced inx and the conservation of generalized potent
vorticity will cause an imbalance in the vorticities of the tw
dipole halves; this imbalance causes the dipole axis to rot
for positive velocity dipoles this rotation of the axis reduc
the tilt, giving rise to a stable oscillation of the trajector
whereas for negative velocity dipoles this rotation increa
the tilt. In the latter case the dipole would be expected
follow a cycloidal or figure-eight-like orbit@8#. This behav-
ior is also described well by a modulated singular point v
tex approximation@23#.

Analytical expressions for the period and amplitude of t
oscillation of tilted positive velocity dipoles are given b
Nycander and Isichenko in Ref.@16#:

T5
4

u S Pd

v*S
D 1/2K@ usin~du/2!u#, ~6!

Dx52sin~du/2!S Pd

v*S
D 1/2, ~7!

whereK is a complete elliptic integral of the first kind,du is
the tilt of the axis of the dipole,Pd[*(f2¹2f)rdx dy is
the vorticity dipole moment, andS the surface under the
initial separatrix of the dipole vortex,S5pr 0

2. For negative
u the period~or frequency! is found to become imaginary
indicating the growth of the instability@16#.

We present here the results of two calculations for dipo
whose axes initially are tilted by 45o with respect to they
axis. This is achieved by changing cosu→cos(u1du) with
du5p/4 in the Larichev-Reznik solution used as initial co
dition for the numerical calculations. In both cases the ba
ground drift velocity is chosen asv*50.4 and the dipole
radius as r 050.5. The initial velocities areu50.5 and
22.0. The results will be shown in terms of the orbits of t
‘‘centers of vorticity’’ of each of the poles. These centers
vorticity are defined by

rC[
( iv̄ ir i

( iv̄ i

with r i~ t50!PC, ~8!
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950 56E. WESTERHOF, J. REM, AND T. J. SCHEP
where the summation is over all particlesi that at t50 are
trapped within the dipole halfC. With this definition one note
of caution must be made: when a significant part of the
tially trapped particles is lost from the dipole, the centers
vorticity will no longer give a good representation of the tr
position of each of the dipole halves. The calculated orbits
the centers of vorticity of the two dipole halves are presen
in Figs. 1 and 2. The dipole with positive velocity~eastward!

FIG. 1. Trajectories of the centers of vorticity of the halves~full

line, v̄ positive; dashed line,v̄ negative! of a dipole tilted by 45o

and with velocity u50.5 ~eastward!, radius r 050.5, and drift
v*50.4.

FIG. 2. Trajectories of the centers of vorticity of the halves~full
line, v̄ positive; dashed line,v̄ negative! of a dipole tilted by 45o

and with velocityu522.0 ~westward!, radius r 050.5, and drift
v*50.4.
i-
f

f
d

is indeed seen in Fig. 1 to travel along a stable, oscillat
trajectory. Substituting the appropriate values in the expr
sions ~6! and ~7! from Ref. @16#, the period and oscillation
are predicted to beT523 andDx51.4, very close to the
results of the numerical calculations, which yieldT522 and
Dx51.2, respectively. Similar results confirming the analy
cal predictions regarding period and amplitude of these
cillation are presented by Hesthavenet al. @17#. As can be
clearly seen in Fig. 1, however, the oscillation is damp
This damping of the oscillation is a consequence both o
decrease in the dipole momentPd , as well as of a small
increase in dipole areaS. The decrease inPd is due to two
effects: losses of originally trapped fluid, and mixing of flu
between the two dipole halves. Although fluid losses
compensated by trapping of ambient fluid, the latter h
much lowerv̄ vorticity, such that the net result is a loss
vorticity. The loss of trapped fluid is a consequence of
breathing of the separatrices of the comoving stream fu
tion as the vorticity in each of the dipole halves changes
to the displacement inx @24,16#. The present PIC calcula
tions provide a straightforward quantification of this loss
fluid or ‘‘particles’’ and of generalized potential vorticity. A
can be seen in Fig. 3, the shedding of fluid and vortic
initially occurs in bursts at different times for the two dipo
halves. After one cycle in its oscillation atT522, the dipole
has shed about 10% of the fluid that was inside its origi
separatrix. This fluid accounts for only about 1% of the ge
eralized potential vorticity originally inside each of the d
pole halves. This shedding of vorticity thus forms only pa
of the explanation of the damping of the oscillation. In ad
tion, similar amounts of fluid are mixed between the dipo
halves.

The trajectory of the negative velocity~westward! dipole
indeed reflects the instability~i.e., the tilt initially increases!.
As is seen in Fig. 2, the first part of the orbit appears to
cycloidal as expected, but already before half a cycle is p
formed, the dipole reverses its average motion eastw
moving along a stable, damped oscillatory trajectory. Sim
results are found for much smaller initial tilts as well.
conclusion, the tilt perturbation divides the dipoles into

FIG. 3. Losses of fluid~full curves! and generalized potentia
vorticity ~dashed curves! from each of the dipole halves of a stab
tilted, positive velocity dipole~parameters as in Fig. 1!. Curves
marked by upward pointing triangles refer to the positivev̄ pole,
while downward pointing triangles refer to the negative pole.
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56 951ROLE OF CORE LOSSES IN DRIFT-VORTEX INTERACTIONS
stableu.0 and a unstable branchu,2v* , where the net
result of the instability is a transition from the unstable
wards the stable branch.

In order to understand how this change in the dipole
jectory comes about, we have performed calculations wit
singular point-vortex model similar to those of Ref.@23#, but
with specifiedad hoc vorticity losses from the two poles
The dipole orbit is reproduced well by the point-vorte
model when a loss rate of generalized potential vorticity
about 0.5% per time unit is assumed, where for parts of
orbit with x,0 the loss is limited to the positive pole an
with x.0 it is limited to the negative pole. This asymmetr
loss of vorticity results in the qualitative change of the dipo
orbit. Without any loss of generalized potential vorticity, t
dipole would crossx50 with the same velocity as it ha
initially, except that the velocity in thex direction has
changed sign. In the first half of the cycloidal orbit the vo
ticity losses are limited to the positive pole, which at neg
tive x is the pole with the larger vorticity. This results in
smaller imbalance between the two poles and, conseque
a slower rotation rate of the dipole axis, with the result th
x50 is crossed with a smaller velocity in they direction.
Eventually the net result is a reversal of the averagey veloc-
ity.

The asymmetry in the loss of generalized potential vor
ity, which is required to explain the dipole orbit, is not r
flected in the losses of initially trapped fluid and the rela
vorticity losses as shown in Fig. 4. However, the fluid loss
must necessarily be compensated by the entrainment of
bient fluid, which itself carries generalized potential vortic
equal to the background potential vorticityv̄'v* x. From
this entrainment of ambient fluid the asymmetry in the v
ticity losses can now be understood: atx,0 the newly
trapped fluid has negative potential vorticity and, con
quently, enhances the vorticity losses of the positive p
but compensates the losses of the negative pole; the opp
holds forx.0.

B. Dipole collisions

The PIC calculations also provide more insight into t
dynamics of dipole vortex collisions. In head-on collisio
with zero impact parameter the dipole vortices show a
markable robustness: in a calculation by Makinoet al. @8#

FIG. 4. Same as Fig. 3 for the unstably tilted, negative veloc
dipole with the parameters of Fig. 2.
-
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the dipole vortices appear to emerge almost unchanged
the collision. The dipole vortices are said to behave alm
solitonlike. As will be shown below, this conclusion is on
partly true.

Figure 5~a! shows the orbits of the centers of vorticity o
each of the dipole halves during the zero impact param
collision with identical parameters as in Ref.@8#: drift veloc-
ity v*50.1, dipole radiir 050.5, velocitiesu1510.3 and
u2520.5, initial positionsx1,250.0,y1,2571.5. In this and
all following pictures the orbit and particles initially assoc
ated with each dipole half are colored green and yellow
the stronger, negative velocity dipole and red and blue
the weaker, positive velocity dipole. The red and green c
ors correspond to the positivev̄ poles and the blue and ye
low colors to the negativev̄ poles. At the collision the origi-
nal dipoles split. The halves of the different dipoles th
form unbalanced dipoles that travel along symmetric, n
circular orbits. In the process, the weaker blue and red dip
halves are pulled around the stronger green and yel
halves. After a half circle, a second collision occurs in whi
the original dipoles reform. When looking at level curves
the vorticity or potential, the two dipoles appear almost u
affected by the collision, in which respect our calculatio
agree well with those of Ref.@8#. This is clearly not the case
when one considers Fig. 5~b!, which gives the final,t513,
positions of all particles initially trapped inside the separat
of the comoving stream function of each dipole half. Clear
both dipoles have lost a significant part of their initial
trapped fluid. In order to estimate these losses, those part
are counted that are by visual inspection no longer associ
with their original dipole. In this way, we can conclude th
the weaker, blue-red dipole has exchanged 25% of its fl
with the ambient medium, a small part of which is trapp
by the other dipole. For the stronger, green-yellow dipo
still 14% of its trapped fluid is exchanged with the ambie
medium or the other dipole. Because of the strong conc
tration of the vorticity near the cores of the vortex pole
however, the exchanged fluid accounts for only 4.2% a
1.2%, respectively, of the generalized vorticities in each
pole half. This important effect of the collision will be
missed by considering only level curves of vorticity or p
tential. The halves of the weaker, blue-red dipole also app
to have separated slightly, which together with the small l
of vorticity has resulted in a 13% lower velocity. The velo
ity of the stronger, green-yellow dipole has decreased
only 2%.

The solitonlike behavior is typical only of the speci
symmetric case of aligned dipoles: i.e., with zero impact
rameterb[uDx/r 0u50, whereDx is the distance betwee
the axes of the dipoles. Various authors have performed
culations for collisions with nonzero impact parameter a
noted the much stronger and possibly even destructive in
action of the dipoles in such cases. Here, we present a sc
impact parameter while keeping all other parameters fixe
those of Ref.@8# ~see also above!. With the impact paramete
increasing asb50.2, 0.4, 0.6, 0.8, and 1.0, respectivel
Figs. 6–10 show the orbits of the centers of vorticity for t
four dipole halves during the collision and the distributio
shortly after the collision of fluid particles initially inside
each of the dipole halves. In some cases the red dipole ha

y
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FIG. 5. ~Color.! ~a! Orbits of the centers of vorticity during a zero impact parameter collision of two aligned dipoles.~b! The positions
at T513 after the collision of fluid particles that in the initial conditions are trapped by the four poles, i.e., those particles that initi
within the separatrices of the comoving stream functions of each of the dipoles. The parameters are as in Ref.@8#: drift velocity v*50.1,
dipole radii r 050.5, velocitiesu1510.3 for the red-blue dipole andu2520.5 for the yellow-green dipole, with initial position
x1,250.0, y1,2571.5. Red and green represent the positivev̄ poles and blue and yellow the negative poles.
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almost completely destroyed or broken into several pieces
those cases the red center of vorticity loses its meaning a
indicator of the position of that pole, and is no longer draw

As the impact parameter is increased from zero, at fi
the two dipoles survive still largely intact. For small impa
parameter, the asymmetric initial conditions result also
In
an
.
st

n

asymmetric final conditions in the sense that after the
forming collision both dipoles emerge with their axes tilte
with respect to they axis. As a consequence, the negati
velocity, green-yellow dipole will become subject to the t
instability described above. With increasing impact para
eter the impact parameter of the second, reforming collis
n
FIG. 6. ~Color.! Same as Fig. 5, but for a finite impact parameterb50.2. Only the initial positionx1 of the red-blue dipole has bee
changed tox1520.1.
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FIG. 7. ~Color.! Same as Fig. 5, but for a finite impact parameterb50.4. Only the initial positionx1 of the red-blue dipole has bee
changed tox1520.2. The red orbit is drawn only forT<11., i.e., until the second collision in which the red pole is almost comple
destroyed.
e

l
ke
c
a

c-
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tly
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increases even further. Forb50.4 this means that only th
stronger of the two dipoles reforms, while forb50.6 the
impact parameter at the reforming collision has increased
much that none of the dipoles reforms but only the new
formed green-blue, unbalanced dipole survives. The wea
red pole of the two dipole halves directly opposite to ea
other, however, having already lost about half its origin
so
y
r,
h
l

fluid in the first collision is completely destroyed in the se
ond collision. This finally leaves its current partner~yellow!
effectively as a monopole. With still larger impact param
eter,b50.8, the first collision no longer leads to a splittin
of the original dipoles. Instead, the dipole halves direc
opposite each other~red-green! are strongly deformed and
practically slip past each other. In the process, however,
n
bout
FIG. 8. ~Color.! Same as Fig. 5, but for a finite impact parameterb50.6. Only the initial positionx1 of the red-blue dipole has bee
changed tox1520.3. The red orbit is drawn only forT<5.0, i.e., until just after the first collision when the red pole already has lost a
half of its trapped fluid.
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FIG. 9. ~Color.! Same as Fig. 5, but for a finite impact parameterb50.8. Only the initial positionx1 of the red-blue dipole has bee
changed tox1520.4. The red orbit is drawn only forT<6.0.
vi
ty,
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s
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d in
site
af-
weaker, red pole is almost completely destroyed. The sur
ing green-yellow dipole, which has negative veloci
emerges with a large tilt of its axis and will be subject to t
tilt instability. A sizable fraction of the fluid lost from the
colliding poles is seen to form a number of small monopo
in the wake of the collision. Forb51.0, both dipoles slip
past each other and emerge with their axes tilted, but b
v-

s

th

remain largely intact. Again, the negative velocity, yellow
green dipole will then be subject to the tilt instability.

The effect of the collision on the different dipole halve
can again be quantified by the loss of fluid from each at
end of the collision process. These results are summarize
Table I. Obviously, the green and red poles directly oppo
each other in the finite impact parameter collisions are
n
FIG. 10. ~Color.! Same as Fig. 5, but for a finite impact parameterb51.0. Only the initial positionx1 of the red-blue dipole has bee
changed tox1520.5.
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TABLE I. Fluid and generalized potential vorticity losses~in %! from the various dipole halves after
collision. The values given apply to the same time as the final states depicted in Figs. 5 to 10. Red a
refer to the positive and negative poles of the downward moving dipoleu520.3, and green and yellow to
the positive and negative poles of the upward moving dipoleu510.5. NB: all losses to the yellow pole in
the case ofb51.0 occur well after the collision as a consequence of the unstable dipole that results fro
collision.

Impact parameter Red Blue Green Yellow

b50.0 Fluid 25 25 14 14

v̄ 4.2 4.2 1.3 1.3

b50.2 Fluid 35 11 29 10

v̄ 11 0.9 7.1 0.9

b50.4 Fluid 77 4.0 51 7.2

v̄ 70 0.4 27 0.5

b50.6 Fluid 76 3.2 58 2.0

v̄ 53 0.1 28 0.0

b50.8 Fluid 80 0.9 36 2.1

v̄ 72 0.0 21 0.0

b51.0 Fluid 23 0.4 21 8.6

v̄ 13 0.0 6.1 1.2
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fected most strongly with the effect being strongest for
weaker, red pole, which in some cases has completely d
tegrated. Further, it is found that forb50.8 the generalized
potential vorticity that is lost from the stronger, green pole
almost completely compensated by the vorticity captu
from the red pole.

IV. SUMMARY AND CONCLUSIONS

Particle-in-cell calculations of perturbed and colliding d
pole vortices in the Hasegawa-Mima-Charney equation~1!
have been performed. An advantage of these PIC calc
tions is the straightforward possibility to visualize and
quantify the fluid and particle losses, trapping, or mixi
between the various vorticity poles themselves and betw
the poles and the ambient medium.

The fluid and vorticity losses from dipoles perturbed by
finite tilt of their axes is initially seen to occur in burst
These losses in combination with a mixing of fluid from bo
poles and a small increase in the separation of the poles
responsible for the damping of the tilt oscillation on t
stable branch (u.0). As the net vorticity losses are not sym
metric between the two dipole halves, the orbit of the dip
on the unstable branch (u,2v* ) is changed dramatically
instead of the expected cycloidal orbit, the net velocity alo
y is completely reversed, leading to a damped oscillat
motion similar to a dipole on the stable branch. Total flu
losses are on the order of 10’s of percent in both cases. T
losses correspond to a much lower percentage of lost ‘‘g
eralized potential vorticity’’ v̄, as a consequence of th
strong concentration of vorticity near the centers of the po
for the parameters studied.

A dipole collision for parameters identical to those in R
@8# has been calculated. In spite of the solitonlike charac
of the collision, a considerable amount of trapped fluid
seen to be lost from the dipoles~up to 25% for the weaker
red-blue of the two!. In addition collisions have been calcu
lated for varying~nonzero! impact parameter. Different val
e
n-

s
d

la-
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re
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g
y

se
n-

s

.
r
s

ues of the impact parameter have large and different co
quences. One finds subsequently:b50.0 ~Fig. 5!: solitonlike;
b50.2 ~Fig. 6!: almost solitonlike, but the asymmetric initia
condition leads to a finite tilt of the axes of the reform
dipoles that leaves the yellow-green dipole subject to the
instability; b50.4 ~Fig. 7!: now only the stronger, yellow-
green dipole reforms, but not without large losses from
green pole. Of the weaker dipole, the red pole is alm
completely torn apart, leaving the blue as a monopo
b50.6 ~Fig. 8!: reforming no longer occurs in the secon
collision, instead, while one dipole~green-blue! formed in
the first collision survives, the yellow pole survives as
monopole and the red pole is destroyed;b50.8 ~Fig. 9!: the
dipoles no longer split at the collision, but rather slip pa
each other; in the process the weaker red pole is almost
stroyed, while the yellow-green dipole is strongly perturb
obtaining a large tilt;b51.0 ~Fig. 10!: the dipoles again slip
past each other, but now both survive the collision. Note t
in most of the cases merging and mixing of like-signed v
ticity fluid is mostly limited to fluid that is shed by the di
poles or to the very edges of the dipole halves themsel
Only in the case ofb50.8 is a significant merging of red
fluid well into the green pole visible, which compensat
almost half of the fluid losses from the green pole, while t
vorticity losses are compensated almost completely. T
case is very similar to the inelastic dipole collision discuss
in Ref. @25#. In any case the mixing is limited to the oute
regions of the green pole.

As vortices appear to form natural constituents in turb
lent flows, they may contribute significantly to transpo
Here, especially transport alongx, i.e., in the direction of the
equilibrium gradient, is of interest. Clearly, a finite tilt of th
dipole will play an important role in that case: part of th
fluid is transported over distances much larger than the
of the dipole. The precise behavior of dipoles is difficult
predict as relatively modest changes to the dipole, such
small tilt of its axis and the effect of nearby dipoles, m
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have large consequences for its orbit and its integrity. Ela
dipole collisions appear to be the exception rather than
rule ~at least for nonzero impact parameter of order 1
smaller!, which limits the lifetime of individual dipoles. All
this makes the behavior of dipole vortices in turbulen
highly unpredictable. In a turbulent medium vortices mig
be continuously created and destroyed.
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