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Role of core losses in drift-vortex interactions
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Dipole drift vortices in the Hasegawa-Mima-Charney equation are studied by means of particletiicgell
calculations. Apart from providing an efficient and accurate solution of the equations, PIC provides additional
information about the fluid flow such as exchange of fluid between regions interior and exterior to the dipoles.
Several cases of perturbed dipoles are studied with particular emphasis on the evolution of the fluid that is
initially trapped inside the separatrix of the co-moving stream function of each unperturbed dipole. In particu-
lar, the effect of a finite tilt of the dipole axis is analyzed. Here, asymmetric losses from the two dipole halves
are found to play a crucial role in the qualitative evolution of the dipole trajectory: dipoles initially moving in
the unstable direction are found to reverse their average velocity perpendicular to the density gradient. Very
large perturbations are obtained in dipole collisions. Here symmetry of the initial conditions plays an important
role: collisions of aligned dipoles appear almost solitonlike, while for nonaligned dipoles the collision at least
generates a tilt of the axes of the dipoles, but may also lead to a complete destruction of one of the poles. In
all cases a significant loss of initially trapped fluid is demonstrdig8ti063-651X97)14207-9

PACS numbegpws): 52.35.Kt, 47.32.Cc, 52.65y

I. INTRODUCTION see[6]). The dipoles propagate along theaxis perpendicu-
lar to the density gradient and their propagation velocity is
A characteristic feature of two-dimension@D) fluid and  restricted to the ranga<—uv, , or u>0, which is outside
plasma turbulence is the emergence of long-lived coherenhe range of phase velocities for linear drift waves.
structures through self-organization processes3]. These We present a study of Larichev-Reznik dipoles by means
coherent structures often take the form of large scale moof g particle-in-cel(PIC) code employing periodic boundary
nopolar and dipolar vortices_, and play an important role ingonditions. As shown by Eq1), the HMC equation is ide-
the global transport of partlcles_and ener_[g;]. Ofte_n the ally suited for such an approachf. [14,15). For example,
nonlinear fluid or plasma equations admit analytical soluyhe global conservation of generalized potential vorticity is

tions. in the fqrm of(dipolt_e) \{ortiqes. The study of these. inherent in the PIC algorithm. Other important conservation
solutions provides further insight into the behavior of vorti-

ces and their importance in turbulent transport. The@Wws are those for energf=3/[4°+(V4)?]dx dy and
Hasegawa-Mima-CharnegyiMC) equation describes the 2D generalized “enstrophy,”U=3[(¢—V?2¢)?dx dy. Also
nonlinear evolution of electrostatic drift modes and turbu-these are found to be well respected by the numerics. Most
lence in an inhomogeneous plasma with a uniform magnetigmportant for the results presented in this paper is that the
field. When the magnetic field is taken along thexis and  particles provide fluid tracers, which contain a wealth of in-
the density inhomogeneity,(x), which gives rise to a con- formation for the interpretation of the dipole dynamics and
stant drift velocityv,, = — (cTe/eB)[dInng(x)/dx], is taken in  fluid flows. In particular, it will be shown that perturbations
the x direction, the HMC equation for the electrostatic po- of a dipole lead to significant exchange between the fluid
tential ¢ can be written a$5,6] trapped inside the separatrix of the co-moving stream func-
tion and the surrounding fluid. As most or all vorticity asso-
9 ciated with the dipole is concentrated in this originally
E(¢—V2¢+U*X)+[¢,¢—V2¢+U*X]=0, (1)  trapped fluid, this inevitably leads to a weakening of the
dipole. In one set of calculations, the effect of a finite tilt of
) . ] . . the dipole axis has been analyzed. Such a tilt is known to
where time is normalized td);", lengths to the ion |ead to a stable oscillatory trajectory for dipoles with positive
gyroradius at the electron temperature, and the potentig} velocity, while for dipoles with negativg velocity the tilt
to e/Te. The Poisson bracke{f,g]=(df/dx)(dg/dy) s unstabld8,16]. Here, it is shown that an asymmetry in the
—(af/dy)(9g/ox) is used to write the convection with the |gsses from the two dipole halves is found to play a crucial
EXB drift as[¢,-]. The same equation describes the be-rgle in the qualitative evolution of the dipole trajectory: di-
havior of Rossby waves in a rotating atmosphere in the sopoles initially moving in a direction subject to the tilt insta-
called beta-plane approximatigésee, e.9.[6] for a detailed pility [16] are found to reverse their average velocity perpen-
comparisoi Equation(1) reflects the conservation of gener- dicular to the density gradient towards the stable direction.
alized potential vorticityw=¢—V?¢p+uv,x. Dipole solu- Very large perturbations may occur in dipole collisions.
tions of the HMC equation have been obtained by LarichevEven though in the case of perfect alignment of the dipole
and RezniK7], and a large number of analytical and numeri- axes these collisions may appear almost solitor{li&e our
cal studies of these dipoles, their stability and interactiongalculations again show the importance of detrapping of siz-
have been carried ofsee, e.g., Ref$8—13], or for a review able fractions of trapped fluid from the original dipoles. Here
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also the symmetry introduced by the alignment of the dipolegation kernels, as suggested for PIC calculations in R,
is crucial. The effect of breaking this symmetry is shown byhave been tried, but yielded a smoothing of the vorticity field
a set of calculations for increasing misalignméont“impact ~ over too large distances without any significant further re-
parameter’). Again the advantages of PIC simulations areduction of the particle noise.
illustrated by the ability to trace the whereabouts after the (D) Solution of the stream functiorh. Once the general-
collision of all fluid that was originally trapped by the di- ized potential vorticity is known on the grid, the Helmholtz
poles. equation for the stream function,

This paper is organized as follows. A brief description of ¢>—V2¢=w_—v X @
the numerical code is given in Sec. Il. The results of numeri- *
cal calculations are presented in Sec. Ill. Initial conditionsjs solved. In the code the solution fgr is obtained by the
for the calculations are obtained from the analytical dipoleFourier transform methofl9].
solutions of Ref.[7], or a superposition of these. Though (c) Calculation of the particle velocities. First, a velocity
these are not exact solutions on a periodic domain, consdield is calculated on the grid by central differencing of the
quent errors are found to be small, as the dipole fields decastream function. Next, the velocity at the position of each
exponentially at large distances. A first set of examples igarticle is obtained by simple bilinear interpolation within a
presented in Sec. Ill A, in which a single dipole is perturbedgrid cell.
by a finite tilt of its initial direction of propagation, resulting ~ (d) The actual time stepping. Here a leap-frog-type algo-
in a stable or unstable oscillation of the dipole trajectoryfithm is employed to achieve sufficient numerical accuracy
depending on its initial direction of propagatif®,16,17. A and stablllty. The a!gorlthm consists of the tracking of two
second set of simulations, presented in Sec. Il B, has beeggnerations of particles, one at odd and one at even time
performed for a dipole collision similar to that treated in Ref. StéPS: The velocity with which the particles are advanced
[8], but with a varying “impact parameter.” Depending on from time t, t0 t,, 5 is then based on the particle position,
the impact parameter, large differences in dipole dynamic orticity dlstr_|l_3u'F|on: and correspo.ndmg stream f“'?C“O” at
are observed. The main conclusions from our work are suma ™€ o 1- _Inmahzauo'n of 'the particles at_, is achieved
marized in Sec. IV along the_ lines descrlbed in R_éQO], except that the stream

U function in all cases is obtained numerically as described

above.
Il. PIC CODE FOR THE HASEGAWA-MIMA-CHARNEY One complication arises in the leap-frog time stepping
EQUATION scheme, since the positions of the odd and even time par-

ticles are directly coupled only at the time of initialization.

In a PIC code, the Hasegawa-Mima-Charney fluid equaAs time progresses in the simulation, trajectories of particles
tion is solved by discretizing the fluid in the form of a large from odd and even time generations diverge due to numeri-
number of fluid parcels or quasiparticles. Each of the fluigcal errors. When this divergence becomes too large, the cal-
parcels is assigned a given amount of generalized potentigilation of the particle velocitietbeing based on the posi-
vorticity, which is conserved by the flow. The solution of the tion of the corresponding particle from the other generation
fluid equation is then achieved by moving the fluid parceldS N0 longer accurate. In order to suppress this source of
according to the flow that is calculated on a regular spatiai!merical error, particles from the odd-time generation are
grid on the basis of th@ vorticity distribution obtained by '€initialized on the basis of the even-time particles after a
interpolation from the fluid parcels to the grid. Here, eachdiVeN number of time stepypically 100—1000
grid cell contains a large number of fluid parcels, and the_1YPical grid sizes for the calculations presented below are
stream function is effectively calculated in a mean-field ap-04 64 or 128<128 with 25 particles per grid cell. Energy
proximation where nearest neighbor interactions are not aconservation is found to be satisfied in all runs to within
counted for. Thus, subgrid scale fluctuations are averageh?e- Enstrophy conservation is typically satisfied within
out, which can be regarded as a form of numerical dissipa? 70 €xcept for periods of very strong dipole interactions
tion. In this procedure the fluid parcels are considered a¥/here losses of up to 5% are found. The latter can be ex-
point particles; i.e., deformations of the fluid parcels in thePlainéd by a transfer of enstrophy to sub-grid scales during
flow, such as stretching, are not accounted for such periods: the sub-grid scale fluctuationswinvorticity

Ir; the code a two-din’1ensionak,®) rectangullar domain &re smoothed out by the assignment to the grid, which results

is taken with periodic boundary conditions. The grid in both!N @ loss of enstroph_y. For a limited number of cases, a final
x andy is regular and the particles are initially distributed check on_the ”“"‘.‘e“ca' accuracy of the results .has been per-
homogeneously over the grid. As the flow is incompressible,rormed e|th_er by increasing th? number c.)f particles per grid
the particle distribution is expected to remdatose t9 ho- cell or by. increasing the .spat|al resolution. The laitter h?‘s
mogeneous, which is indeed verified by the code result een achieved by increasing the number of grid cells while

apart from statistical fluctuations due to the finite number o eeping the number of particles per cell fixed and, thus, in-

particles per grid cell. The code then consists of the follow-creasing the total number of particles as well. The increased

ing basic procedures. accuracy did not lead to significant differences between the
(a) Assignment of generalized potential vorticity from the results.

particles to the grid. This is achieved by the triangular

shaped cloud(TSC) algorithm [15]. This interpolation

scheme leads to an effective suppression of the particle noise The HMC equatior(1) is known to possess dipole vortex

in the simulations, with a smoothing of the vorticity field solutions. Analytical expressions for such solutions have

only on the order of the grid cell size. Higher order interpo-been given by Larichev and RezriK]. These are obtained

[ll. NUMERICAL RESULTS
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by searching for stationary propagating solutions with velociments are functionally related by some arbitrary function
ity u in they direction, i.e., solutions depending only on the F. The Larichev-Reznik dipole solution is obtained by taking

combinationy —ut, and thus by solving for F a simple linear relation, with different coefficients in-
side and outside a given copropagating circle of radiis
[p—ux,¢—V2p+v,x]=0. 3 The solutions in the inner and outer regions are then matched

at the boundary. The solution that is obtained can be written
The Poisson bracket vanishes identically when the two arguas|[7,21]

roK.(pr
u(01—(p)) cosyl outer regionr >r
_ Ki(pro) @
) p2 1 N fod(AT) <9 inner regionr <r
N S ) Jom=to.

wherep?=1+u, /u and the matching of the inner and outer displaced inx and the conservation of generalized potential
solutions provides a dispersion relation fof 7]: vorticity will cause an imbalance in the vorticities of the two
dipole halves; this imbalance causes the dipole axis to rotate;
Arodi(Nro)/Ja(Nro)=—proKi(pro)/Ka(pro). (5 for positive velocity dipoles this rotation of the axis reduces
the tilt, giving rise to a stable oscillation of the trajectory,
whereas for negative velocity dipoles this rotation increases
the tilt. In the latter case the dipole would be expected to
follow a cycloidal or figure-eight-like orbi8]. This behav-

Note that the requirement for real limits the solutions to
propagating velocitiesi<—wv, or u>0, which means that
precisely the range corresponding to phase velocities for th

linear waves is excluded. In geophysical terms, positive , s 4150 described well by a modulated singular point vor-
corresponds to eastward and negativeo westward propa- oy approximatior23).

gation. In the comoving frame, the stream function possesses Analytical expressions for the period and amplitude of the

a separatrix atr=ro: the fluid inside this separatrix i oggijjation of tilted positive velocity dipoles are given by
trapped and simply carried along with the dipole motion. Nycander and Isichenko in RefL6]:
The initial conditions used in the numerical simulations

presented below are based on these analytical dipole solu- 4( Py

1/2
v*_S) K[|sin(86/2)|1, (6)

tions or a superposition of two of them. Since the analytical T= u

solutions are obtained on an infinite domain, whereas peri-

odic boundary conditions on a finite rectangular domain are

applied in the numerics, they are not the exact solutions for p .\ 12
. ; . d

the latter case. However, the error this introduces in the nu- Ax=2sin 59/2)( ) , (7)

merics is small, especially because of the exponential decay )

of the solution for large. The same remark applies to the

superposition of two analytical solutions: provided they are ) L . . .
initially well separated so that the effect of the lamgeon- whereK is a complete elliptic integral of the first kindg is

tribution of the one on the other is negligible. the tilt of the axis of the dipolePy=J(¢—V24)rdx dyis

the vorticity dipole moment, an& the surface under the

initial separatrix of the dipole vortexs= wré. For negative

u the period(or frequency is found to become imaginary,
The dipoles in the HMC equation show a remarkable staindicating the growth of the instabilitj16].

bility to all kinds of perturbations. Any attempt at an analyti-  \We present here the results of two calculations for dipoles

cal proof of their stability, however, has fail¢@2]. More-  whose axes initially are tilted by 45with respect to they

over, a small tilt of the axis of a dipole with<—v,  axis. This is achieved by changing @escos@+56) with

(westward leads to an instability in the sense that the tilt will sg= /4 in the Larichev-Reznik solution used as initial con-

increase{8,16]. Perturbation of the dipole axis of a dipole dition for the numerical calculations. In both cases the back-

with u>0 (eastwardl only leads to a stable oscillation ground drift velocity is chosen as, =0.4 and the dipole

around the original straight trajectof,16|. However, a ba-  radjus asr,=0.5. The initial velocities areu=0.5 and

sic question is whether, or to what extent, the dipole as such-2 g The results will be shown in terms of the orbits of the

stays intact along its orbit. Even modest losses of fluid andcenters of vorticity” of each of the poles. These centers of
vorticity can lead, when integrated over long times, to largeyorticity are defined by

and qualitative changes in the dipole orbit. The different be-

haviors of the dipoles with negative and positive velocity can

be explained by simple arguments based on the conservation S ol

of generalized potential vorticit}8,16]: a dipole will move re=—— with r,(t=0)eC, (8)

in the direction of its axis; as the axis is tilted it will be Zj i

A. Dipole stability
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FIG. 3. Losses of fluidfull curves and generalized potential
vorticity (dashed curvesrom each of the dipole halves of a stably
00 L tilted, positive velocity dipole(parameters as in Fig.).1Curves
' ! ! \ marked by upward pointing triangles refer to the posifiveole,
1.0 0.0 1.0 while downward pointing triangles refer to the negative pole.
X

is indeed seen in Fig. 1 to travel along a stable, oscillating
trajectory. Substituting the appropriate values in the expres-
sions(6) and (7) from Ref.[16], the period and oscillation
are predicted to bd=23 andAx=1.4, very close to the
results of the numerical calculations, which yifle-22 and
Ax=1.2, respectively. Similar results confirming the analyti-
cal predictions regarding period and amplitude of these os-

FIG. 1. Trajectories of the centers of vorticity of the halyksl
line, o positive; dashed linep negative of a dipole tilted by 48
and with velocity u=0.5 (eastwarg, radius r,=0.5, and drift
v,=0.4.

where the summation is over all particleshat att=0 are

trapped within the dipole half. With this definition one note ' ¥
of caution must be made: when a significant part of the ini—C:"at'lOn are prerls:gnteld Ey Hestha\;]ehal. [.}Iﬂ'. As_cadn he d

tially trapped particles is lost from the dipole, the centers off:l_ﬁ.aré’ seen n f 'g' ’ _cl)lvvgverz the oscillation s barppe} '
vorticity will no longer give a good representation of the true IS amp_lngho é_e IOSC' ation is a consltlaquen?e ot I(I) a
position of each of the dipole halves. The calculated orbits ijecrease in the dipole momeRY,, as well as of a sma

the centers of vorticity of the two dipole halves are presenteéf1crease in dipole qrgﬁ. The decreasg iRy is d_u? to two .
in Figs. 1 and 2. The dipole with positive velociigastward effects: losses of originally trapped fluid, and mixing of fluid
between the two dipole halves. Although fluid losses are

compensated by trapping of ambient fluid, the latter has
much lowerw vorticity, such that the net result is a loss of
vorticity. The loss of trapped fluid is a consequence of the
breathing of the separatrices of the comoving stream func-
tion as the vorticity in each of the dipole halves changes due
to the displacement i [24,16. The present PIC calcula-
tions provide a straightforward quantification of this loss of
1 fluid or “particles” and of generalized potential vorticity. As
can be seen in Fig. 3, the shedding of fluid and vorticity
initially occurs in bursts at different times for the two dipole
halves. After one cycle in its oscillation &t=22, the dipole
has shed about 10% of the fluid that was inside its original
separatrix. This fluid accounts for only about 1% of the gen-
eralized potential vorticity originally inside each of the di-
pole halves. This shedding of vorticity thus forms only part
of the explanation of the damping of the oscillation. In addi-
tion, similar amounts of fluid are mixed between the dipole
halves.
: : ! The trajectory of the negative velocifywestward dipole
indeed reflects the instability.e., the tilt initially increases
As is seen in Fig. 2, the first part of the orbit appears to be
cycloidal as expected, but already before half a cycle is per-
FIG. 2. Trajectories of the centers of vorticity of the halytsl formed, the dipole reverses its average motion eastward,
line, w positive; dashed linew negative of a dipole tilted by 48 moving along a stable, damped oscillatory trajectory. Similar
and with velocityu= —2.0 (westward, radiusr,=0.5, and drift  results are found for much smaller initial tilts as well. In
v, =04 conclusion, the tilt perturbation divides the dipoles into a

30.0

200

10.0

0.0
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30 15 the dipole vortices appear to emerge almost unchanged after
o the collision. The dipole vortices are said to behave almost
9 - ._JU solitonlike. As will be shown below, this conclusion is only
= 0l 1102 partly true.
2 Cae 3 Figure 5a) shows the orbits of the centers of vorticity of
§ Y “2’ each of the dipole halves during the zero impact parameter
z " 9 collision with identical parameters as in RE8): drift veloc-
c 10r _ T > s g ity v, =0.1, dipole radiir,=0.5, velocitiesu;=+0.3 and
e - u,=—0.5, initial positionsx; ,=0.0,y; ;= *1.5. In this and
e B all following pictures the orbit and particles initially associ-
o et . : : ' : ' 0 ated with each dipole half are colored green and yellow for
6 5 10 15 20 25 30 35 40 the stronger, negative velocity dipole and red and blue for
Time the weaker, positive velocity dipole. The red and green col-

ors correspond to the positive poles and the blue and yel-
FIG. 4. Same as Fig. 3 for the unstably tilted, negative velocitylow colors to the negative poles. At the collision the origi-
dipole with the parameters of Fig. 2. nal dipoles split. The halves of the different dipoles then
form unbalanced dipoles that travel along symmetric, near
stableu>0 and a unstable branah<-—v, , where the net cjrcylar orbits. In the process, the weaker blue and red dipole
result of the instability is a transition from the unstable t0-p,5ves are pulled around the stronger green and yellow
wards the stable branch. _ _ _ halves. After a half circle, a second collision occurs in which
_In order to understand how this change in the .d'p°|e.tra’[he original dipoles reform. When looking at level curves of
jectory comes about, we havg performed calculations with e vorticity or potential, the two dipoles appear almost un-
smgular ppllnt-vortex mod.eIIS|m|Iar o those of RE23], but affected by the collision, in which respect our calculations
with specifiedad hoc vorticity losses from the two poles. agree well with those of Ref8]. This is clearly not the case

The dipole orbit is reproduced well by the point-vortex . . . . . =
model when a loss rate of generalized potential vorticity ofWherl one considers Fig(ly, which gives the finalf =13,

about 0.5% per time unit is assumed, where for parts of th@)ositions of a_ll particles initial!y trapped ins_ide the separatrix
orbit with x<0 the loss is limited to the positive pole and Of the comoving stream function of each dipole half. Clearly,
with x>0 it is limited to the negative pole. This asymmetric 20th dipoles have lost a significant part of their initially
loss of vorticity results in the qualitative change of the dip0|etrapped fluid. In order to estimate these losses, those particles
orbit. Without any loss of generalized potential vorticity, the are counted that are by visual inspection no longer associated
dipole would crossx=0 with the same velocity as it had with their original dipole. In this way, we can conclude that
initially, except that the velocity in the direction has the weaker, blue-red dipole has exchanged 25% of its fluid
changed sign. In the first half of the cycloidal orbit the vor- With the ambient medium, a small part of which is trapped
ticity losses are limited to the positive pole, which at nega-by the other dipole. For the stronger, green-yellow dipole,
tive x is the pole with the larger vorticity. This results in a Still 14% of its trapped fluid is exchanged with the ambient
smaller imbalance between the two poles and, consequentifedium or the other dipole. Because of the strong concen-
a slower rotation rate of the dipole axis, with the result thatiration of the vorticity near the cores of the vortex poles,
x=0 is crossed with a smaller velocity in thedirection. ~however, the exchanged fluid accounts for only 4.2% and

Eventually the net result is a reversal of the averpgeloc-  1.2%, respectively, of the generalized vorticities in each di-
ity. pole half. This important effect of the collision will be
The asymmetry in the loss of generalized potential vortic-missed by considering only level curves of vorticity or po-
ity, which is required to explain the dipole orbit, is not re- tential. The halves of the weaker, blue-red dipole also appear
flected in the losses of initially trapped fluid and the relatedt® have separated slightly, which together with the small loss
vorticity losses as shown in Fig. 4. However, the fluid lossef vorticity has resulted in a 13% lower velocity. The veloc-
must necessarily be compensated by the entrainment of arffy Of the stronger, green-yellow dipole has decreased by
bient fluid, which itself carries generalized potential vorticity Only 2%. o _ _
equal to the background potential vorticiiy=~v, x. From The s_olltonhke be;hawor is typlgal on_ly of the_z special
this entrainment of ambient fluid the asymmetry in the vor-Symmetric case of aligned dipoles: i.e., with zero impact pa-
ticity losses can now be understood: st 0 the newly rameterb=|Ax/ro|=0, whereAx is the distance between
trapped fluid has negative potential vorticity and, conselhe axes of the d_lp_oles. Various authqrs have performed cal-
quently, enhances the vorticity losses of the positive pO|e,culat|ons for collisions with nonzero impact parameter and

but compensates the losses of the negative pole; the opposigted the much stronger and possibly even destructive inter-
holds forx>0. action of the dipoles in such cases. Here, we present a scan in

impact parameter while keeping all other parameters fixed to
those of Ref[8] (see also aboyeWith the impact parameter
increasing av=0.2, 0.4, 0.6, 0.8, and 1.0, respectively,
The PIC calculations also provide more insight into theFigs. 6—10 show the orbits of the centers of vorticity for the
dynamics of dipole vortex collisions. In head-on collisionsfour dipole halves during the collision and the distribution
with zero impact parameter the dipole vortices show a reshortly after the collision of fluid particles initially inside
markable robustness: in a calculation by Makietoal. [8]  each of the dipole halves. In some cases the red dipole half is

B. Dipole collisions
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FIG. 5. (Color) (a) Orbits of the centers of vorticity during a zero impact parameter collision of two aligned digbJeEhe positions
at T=13 after the collision of fluid particles that in the initial conditions are trapped by the four poles, i.e., those particles that initially lie
within the separatrices of the comoving stream functions of each of the dipoles. The parameters are gs8]ndgiéfvelocity v, =0.1,
dipole radii ry=0.5, velocitiesu;=+0.3 for the red-blue dipole and,=—0.5 for the yellow-green dipole, with initial positions
X1,=0.0,y;,=F1.5. Red and green represent the positivpoles and blue and yellow the negative poles.

almost completely destroyed or broken into several pieces. lasymmetric final conditions in the sense that after the re-
those cases the red center of vorticity loses its meaning as darming collision both dipoles emerge with their axes tilted
indicator of the position of that pole, and is no longer drawn.with respect to they axis. As a consequence, the negative
As the impact parameter is increased from zero, at firsvelocity, green-yellow dipole will become subject to the tilt
the two dipoles survive still largely intact. For small impact instability described above. With increasing impact param-
parameter, the asymmetric initial conditions result also ineter the impact parameter of the second, reforming collision
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x X

FIG. 6. (Color) Same as Fig. 5, but for a finite impact parameéter0.2. Only the initial positiorx; of the red-blue dipole has been
changed toc;=—0.1.
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FIG. 7. (Color) Same as Fig. 5, but for a finite impact paraméter0.4. Only the initial positiorx; of the red-blue dipole has been
changed tax;=—0.2. The red orbit is drawn only foF<11., i.e., until the second collision in which the red pole is almost completely
destroyed.

increases even further. Fbr=0.4 this means that only the fluid in the first collision is completely destroyed in the sec-
stronger of the two dipoles reforms, while for=0.6 the ond collision. This finally leaves its current partrigellow)
impact parameter at the reforming collision has increased seffectively as a monopole. With still larger impact param-
much that none of the dipoles reforms but only the newlyeter,b=0.8, the first collision no longer leads to a splitting
formed green-blue, unbalanced dipole survives. The weakeof the original dipoles. Instead, the dipole halves directly
red pole of the two dipole halves directly opposite to eachopposite each othefred-greeh are strongly deformed and
other, however, having already lost about half its originalpractically slip past each other. In the process, however, the

1.0

0.0

-20

3.0
2.0 -1.0

FIG. 8. (Color) Same as Fig. 5, but for a finite impact paraméter0.6. Only the initial positiorx; of the red-blue dipole has been
changed to; = —0.3. The red orbit is drawn only foF<5.0, i.e., until just after the first collision when the red pole already has lost about
half of its trapped fluid.
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FIG. 9. (Color) Same as Fig. 5, but for a finite impact paraméter0.8. Only the initial positiorx; of the red-blue dipole has been
changed to;=—0.4. The red orbit is drawn only foF<6.0.

weaker, red pole is almost completely destroyed. The survivremain largely intact. Again, the negative velocity, yellow-
ing green-yellow dipole, which has negative velocity, green dipole will then be subject to the tilt instability.

emerges with a large tilt of its axis and will be subject to the

The effect of the collision on the different dipole halves

tilt instability. A sizable fraction of the fluid lost from the can again be quantified by the loss of fluid from each at the
colliding poles is seen to form a number of small monopolesnd of the collision process. These results are summarized in
in the wake of the collision. Fob=1.0, both dipoles slip Table I. Obviously, the green and red poles directly opposite
past each other and emerge with their axes tilted, but boteach other in the finite impact parameter collisions are af-
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FIG. 10. (Color) Same as Fig. 5, but for a finite impact paramdter1.0. Only the initial positiorx, of the red-blue dipole has been

changed to;=—0.5.
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TABLE I. Fluid and generalized potential vorticity loss@s %) from the various dipole halves after a
collision. The values given apply to the same time as the final states depicted in Figs. 5 to 10. Red and blue
refer to the positive and negative poles of the downward moving dipsle-0.3, and green and yellow to
the positive and negative poles of the upward moving dipetet 0.5. NB: all losses to the yellow pole in
the case ob= 1.0 occur well after the collision as a consequence of the unstable dipole that results from the

collision.
Impact parameter Red Blue Green Yellow
b=0.0 Fluid 25 25 14 14
® 4.2 4.2 1.3 1.3
b=0.2 Fluid 35 11 29 10
® 11 0.9 7.1 0.9
b=0.4 Fluid 77 4.0 51 7.2
® 70 0.4 27 0.5
b=0.6 Fluid 76 3.2 58 2.0
® 53 0.1 28 0.0
b=0.8 Fluid 80 0.9 36 21
® 72 0.0 21 0.0
b=1.0 Fluid 23 0.4 21 8.6
® 13 0.0 6.1 1.2

fected most strongly with the effect being strongest for theues of the impact parameter have large and different conse-
weaker, red pole, which in some cases has completely disirquences. One finds subsequentiy: 0.0 (Fig. 5): solitonlike;
tegrated. Further, it is found that ftr=0.8 the generalized b=0.2(Fig. 6): almost solitonlike, but the asymmetric initial
potential vorticity that is lost from the stronger, green pole iscondition leads to a finite tilt of the axes of the reformed
almost completely compensated by the vorticity capturedjipoles that leaves the yellow-green dipole subject to the tilt

from the red pole. instability; b=0.4 (Fig. 7): now only the stronger, yellow-
green dipole reforms, but not without large losses from the
IV. SUMMARY AND CONCLUSIONS green pole. Of the weaker dipole, the red pole is almost

Particle-in-cell calculations of perturbed and colliding di- COMPletely tom apart, leaving the blue as a monopole;
pole vortices in the Hasegawa-Mima-Charney equatibn b=Q._6 (F|g. 8): reformlng no Ignger occurs in the se(_:ond
have been performed. An advantage of these PIC calcul&ollision, instead, while one dipolereen-blug formed in
tions is the straightforward possibility to visualize and tothe first collision survives, the yellow pole survives as a
quantify the fluid and particle losses, trapping, or mixingmonopole and the red pole is destroybe; 0.8 (Fig. 9): the
between the various vorticity poles themselves and betweedipoles no longer split at the collision, but rather slip past
the poles and the ambient medium. each other; in the process the weaker red pole is almost de-

The fluid and vorticity losses from dipoles perturbed by astroyed, while the yellow-green dipole is strongly perturbed
finite tilt of their axes is initially seen to occur in bursts. obtaining a large tilth= 1.0 (Fig. 10: the dipoles again slip
These losses in combination with a mixing of fluid from both past each other, but now both survive the collision. Note that
poles and a small increase in the separation of the poles aie most of the cases merging and mixing of like-signed vor-
responsible for the damping of the tilt oscillation on the ticity fluid is mostly limited to fluid that is shed by the di-
stable branchy(>>0). As the net vorticity losses are not sym- poles or to the very edges of the dipole halves themselves.
metric between the two dipole halves, the orbit of the dipoleOnly in the case ob=0.8 is a significant merging of red
on the unstable branchu€ —v, ) is changed dramatically: fluid well into the green pole visible, which compensates
instead of the expected cycloidal orbit, the net velocity alongalmost half of the fluid losses from the green pole, while the
y is completely reversed, leading to a damped oscillatoryorticity losses are compensated almost completely. This
motion similar to a dipole on the stable branch. Total fluidcase is very similar to the inelastic dipole collision discussed
losses are on the order of 10’s of percent in both cases. The#e Ref. [25]. In any case the mixing is limited to the outer
losses correspond to a much lower percentage of lost “gerregions of the green pole.
eralized potential vorticity” w, as a consequence of the As vortices appear to form natural constituents in turbu-
strong concentration of vorticity near the centers of the pole¢ent flows, they may contribute significantly to transport.
for the parameters studied. Here, especially transport alomgi.e., in the direction of the

A dipole collision for parameters identical to those in Ref. equilibrium gradient, is of interest. Clearly, a finite tilt of the
[8] has been calculated. In spite of the solitonlike charactedipole will play an important role in that case: part of the
of the collision, a considerable amount of trapped fluid isfluid is transported over distances much larger than the size
seen to be lost from the dipolésp to 25% for the weaker, of the dipole. The precise behavior of dipoles is difficult to
red-blue of the twh In addition collisions have been calcu- predict as relatively modest changes to the dipole, such as a
lated for varying(nonzerg impact parameter. Different val- small tilt of its axis and the effect of nearby dipoles, may
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have large consequences for its orbit and its integrity. Elastic ACKNOWLEDGMENTS
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